

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008

Highly Dispersed Ruthenium Hydroxide Species Supported on Titanium Oxide Effective for Liquid-Phase Hydrogen-Transfer Reactions

Kazuya Yamaguchi, Takeshi Koike, Jung Won Kim, Yoshiyuki Ogasawara, and Noritaka Mizuno*^[a]

 [a] Prof. Dr. N. Mizuno, Dr. K. Yamaguchi, Y. Ogasawara, J. W. Kim, T. Koike Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

	Ŏ, O		ŎН
_		atalyst	
Entry	Catalyst	Yield [%]	TOF $[h^{-1}]$
1	Ru(OH) _x /TiO ₂ (A)	51	118
2	Ru(OH) _x /TiO ₂ (B)	22	44
3	Ru(OH) _x /TiO ₂ (C)	2	6
4	Ru(OH) _x /Al ₂ O ₃	6	13
5	Ru(OH) _x	no reaction	
6 ^[b]	TiO ₂ (A)	no reaction	
7 ^[b]	Al_2O_3	no reaction	
8	none	no reaction	

Table S1. Reduction of acetophenone using 2-propanol.^[a]

[a] Reaction conditions: Acetophenone (1 mmol), catalyst (Ru: 1 mol%), 2-propanol (3 mL), 363 K, 0.5 h, under 1 atm of Ar. Yields were determined by GC analyses (DB-WAX column) using an internal standard technique. [b] 40 mg.

Scheme S1. Reduction of (*R*)-citronellal with molecular hydrogen. Reaction conditions: (*R*)-citronellal (1 mmol), catalyst (metal: 1 mol%), methanol (3 mL), H_2 (4 atm), 298 K, 1.5 h. Pd/C (Pd: 5 wt%) and Adam's catalyst were obtained from N. E. Chemcat and Nacalai tesque, respectively.

Scheme S2. A possible reaction mechanism for the racemization of chiral secondary alcohols.

Scheme S3. A possible reaction mechanism for the MPV-type reduction.

Scheme S4. A possible reaction mechanism for the reduction of allylic alcohols.